Tractography-guided statistics (TGIS) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa.

نویسندگان

  • Jungsu S Oh
  • In Chan Song
  • Jae Sung Lee
  • Hyejin Kang
  • Kwang Suk Park
  • Eunjoo Kang
  • Dong Soo Lee
چکیده

Parasagittal or off-midsagittal structures of the interhemispheric fiber tracts, i.e., the corpus callosum (CC), have a tendency to form structures which diverge from the midsagittal CC (mCC). This has led to mild inconsistencies in terms of defining parasagittal structures as region of interest for diffusion tensor imaging (DTI) analysis. Moreover, it is a labor-intensive work with potential inconsistencies and inaccuracies to define the parasagittal structure slice by slice using currently available methods. In the present study, to better cope with these problems, a new method was developed to construct the extended parasagittal structure of the CC using diffusion tensor tractography-guided (TGI) parameterization methods based on tract-length-based and parasagittal plane-based extensions. Using extended ROIs, fractional anisotropy (FA) values, as the indicators of fiber integrity in DTI, were compared between normal 14 male (25.7+/-4.7 years) and 17 female (25.9+/-4.6 years) groups for investigating the gender difference. Both TGI parameterization methods showed that men have significantly higher regional FA values than women for global CC structure areas in parasagittal and midsagittal space. In contrast, women showed significantly higher FA values in the partial areas of the rostrum, genu and splenium. Our findings based on TGI statistics (TGIS) of fiber integrity could serve as a frame of reference for assessing the group differences of the CCs in finer scale and in more extended space or parasagittal space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review

Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...

متن کامل

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies

Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2007